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Abstract—Lithium tributylmagnesate complex (n-Bu3MgLi), readily prepared from n-BuLi and n-BuMgCl (2:1), is a novel
metallation agent. It is quite efficient for the selective mono-bromine–magnesium exchange of 2,6-dibromopyridine (1) under
non-cryogenic conditions (at −10°C) to give a stable magnesate intermediate. Subsequent treatment with DMF gave 6-bromo-2-
formylpyridine (3) in excellent yield. This method is also applicable for selective monosubstitution of several other kinds of
dibromoarenes. © 2001 Elsevier Science Ltd. All rights reserved.

In the course of the process development for a novel
muscarinic M3 antagonist,1 we required selective mono-
formylation of 2,6-dibromopyridine (1) via a bromine–
metal exchange reaction (Scheme 1). Selective
mono-metallation of 1 appears to be a key transforma-
tion for the synthesis of biologically important
compounds2 and several procedures for the lithium–
bromine exchange of 1 giving 2 (M=Li) using n-BuLi
have been reported.3 However, these methods require
cryogenic conditions (−40 to −78°C) and are not practi-

cal for industrial-scale operation. The development of a
practical and scalable process, which does not need
cryogenic conditions, has been quite desirable. In this
article, we describe a novel scalable bromine–magne-
sium exchange reaction of 1 utilizing the magnesium ate
complex n-Bu3MgLi. The application to several aryl
and heteroaryl dibromides is also described.

The magnesium–bromine exchange reaction of 1 with
i-PrMgCl at ambient temperature has been reported
recently by Quéguiner et al.4 We applied their protocol
to the preparation of 3. However, even using our
optimized conditions (Scheme 2), the desired exchange
reaction was relatively sluggish (>5 h at 20°C) and a
slight excess of i-PrMgCl was necessary to complete the
reaction. In addition, the formation of an alkylated side
product 4 (>5%) was not prevented.5 On the other
hand, it should be noted that the organomagnesiumScheme 1.

Scheme 2.
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intermediate (2: M=MgCl) was very stable at 20°C and
no significant decomposition was observed, even after
aging for 24 h. Knochel et al. have recently reported
that the analogous i-Pr2Mg-induced exchange reaction
shows a similar reactivity to i-PrMgCl.6 These results
prompted us to investigate a magnesium ate complex
(R3MgLi), which should exhibit the reactivity between
n-BuLi and i-PrMgCl/i-Pr2Mg, giving a stable metal-
lated species under non-cryogenic conditions. The use
of magnesium ate complexes for the halogen–metal
exchange has not been known until a recent report by
Oshima et al.7

The ate complex n-Bu3MgLi can be prepared by mixing
equimolar amounts of n-Bu2Mg and n-BuLi according
to the literature.8 Since n-Bu2Mg can be prepared from
n-BuMgCl and n-BuLi,9 we thus chose n-BuMgCl as a
more convenient and safer alternative to n-Bu2Mg. We
therefore prepared n-Bu3MgLi by mixing n-BuMgCl (in
THF) and n-BuLi (in hexane) in the ratio of 1:2;10 the
1H and 13C NMR observations showed the existence of
a single species distinctly different from either n-
BuMgCl or n-BuLi.11 The bromine–magnesium
exchange reaction of 1 with the n-Bu3MgLi (0.35 mol
equiv.; 1.05 equiv. of Bu) proceeded efficiently at −10°C
in toluene,12 giving an almost pure mono-metallated
intermediate (97% in peak area of HPLC).13 Subse-
quent treatment with DMF gave the desired aldehyde 3
in 95% yield (Scheme 3). Interestingly, several protocols
for the halogen–metal exchange using metal ate com-
plexes have been published previously.7b,14 In all
reports, however, only one or two alkyl groups are
functional at the expense of other alkyl groups. Thus,
these methods appear unsatisfactory with regard to
economy and product quality. Conversely, in our pro-
tocol, all three alkyl groups in the ate complex partici-
pate in the magnesium–bromine exchange.

It should be noted that the metallated intermediate was
very stable in toluene at −10°C, giving 3 in 90% yield,
even after aging for 10 h before the treatment with
DMF. The intermediate appears to be a magnesate
complex such as 6, different from a mixture of dipyridyl
magnesium and 2-bromo-6-lithiopyridine (2, M=Li)
since the lithiated intermediate was unstable under sim-
ilar conditions, as shown in Table 1.

Solvent effects on the selective metallation are shown in
Table 2. The selection of the reaction solvent was
important to control the reactivity. The exchange reac-
tion of n-Bu3MgLi was quite selective for 1 in toluene

and a maximum of 0.5% of diformyl product 5, via
dimetallation, was obtained. A slight excess of the
reagent (1.2 mol equiv.) did not affect the selectivity
(entry 2). Even with the use of 1.5 mol equiv. of
n-Bu3MgLi, only 2% of 5 was obtained (entry 3). In
THF, an accurate charge of the reagent was necessary
to obtain an acceptable yield of 3 (entry 4). An excess
of the reagent (1.5 mol equiv.) in THF caused a signifi-
cant formation of 5 (43%) (entry 5).

Effects of the ratio of n-BuMgCl to n-BuLi on the
reagent activity are also shown in Table 2. An under-
charge of n-BuLi to n-BuMgCl decreased the reactivity
due to formation of a mixture of n-Bu3MgLi and
n-Bu2Mg (entry 6). It is known that n-Bu2Mg is almost
inert to 1 under the reaction conditions. The overcharge
of n-BuLi did not reduce the yield of 3 (entry 7). In this
case, a higher-ordered magnesate (n-Bu4MgLi2) might
be partly generated. The reagent prepared from the
ratio of n-BuLi to n-BuMgCl (3:1) was probably n-
Bu4MgLi28 and showed a similar reactivity to n-
Bu3MgLi (entry 8).

We next examined the application of this protocol to
other dibromoarenes and dibromoheteroarenes. The
results are summarized in Table 3. To avoid the precip-
itation of the magnesate intermediate, THF was added
to toluene for some substrates. In all cases, <2% of
dimetallation was obtained. 1,4- and 1,3-Dibromoben-
zene gave the corresponding mono-formylated benzene
in good yields (entries 1 and 2). The exchange of
1,4-dibromo-2-fluorobenzene was selective at the 1-
position to afford 4-bromo-2-fluorobenzaldehyde in
92% assay yield (entry 3). 3,5-Dibromopyridine gave

Table 1. Stability of the ate complex 6 versus 2-bromo-6-
lithiopyridine (2: M=Li) at −10°C

Yield of 3 (%)Aging time (h)a

Via 6 Via 2 (M=Li)

970.5 90
951 70

533 93
–b9010

a Aging time after the treatment of 1 and n-Bu3MgLi (0.35 equiv.) or
n-BuLi (1.0 equiv.).

b No data.

Scheme 3.
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Table 2. Solvent effects on the selective exchange (entries 1–5) and the effects of the ratio of n-BuMgCl and n-BuLi on the
reagent activity (entries 6–8)a

Ratio Solvent Yield (%)Entry Reagent

n-BuMgCl/n-BuLi (mol equiv. to 1) 3 5 1

1 0.35/0.7 (1.05) 1:2 Toluene 95 �0.5 0.2
1:2 Toluene 950.4/0.8 (1.2) �0.52 0
1:2 Toluene 903 20.5/1.0 (1.5) 0
1:2 THF 900.35/0.7 (1.05) 54 0
1:2 THF 49 435 00.5/1.0 (1.5)

1:1.75 Toluene6 630.4/0.7 (1.1) 27
7 0.4/0.9 (1.3) 1:2.25 Toluene 96 0

0.3/0.9 (1.2)8 1:3 Toluene 95 0.2

a Reactions were carried out in toluene at −10°C. DMF was added after 2 h of aging.

Table 3. n-Bu3MgLi-mediated mono-formylation of dibromoarenes and dibromoheteroarenes

the corresponding aldehyde in 78% isolated yield (entry
4) and 2,5-dibromopyridine afforded selectively 6-
bromo-3-pyridinecarboxaldehyde in 71% assay yield
(entry 5). 2,5-Dibromothiophene was also cleanly
metallated to give the corresponding aldehyde in 73%
isolated yield (entry 6).

In summary, lithium tributylmagnesate complex (n-
Bu3MgLi) is an efficient reagent for selective mono-
formylation of dibromoarenes and dibromo-
heteroarenes via bromine–magnesium exchange
reaction. This novel reaction can be carried out under
non-cryogenic conditions (at −10°C) and therefore
offers a significant advantage for large-scale produc-
tion. This method was used for the preparation of 25 kg
of 3 (91% assay yield) in our laboratory.15 Further

studies on the reaction mechanism and the other appli-
cations are currently underway.
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